

Higgs boson decay width and couplings at Muon Collider

L. Giambastiani

University and INFN Padova On behalf of the International Muon Collider Collaboration

The Muon Collider

Collaboration

- · Advantages from lepton and hadron colliders: o all energy available in hard collision
 - o no bremsstrahlung → energy frontier machine
- Muons are unstable: decay products at high energy interact with machine elements producing a large flux of secondary particles: Beam Induced Background (BIB)
- BIB is mitigated with two cone-shaped tungsten shielding nozzles [1]. Nevertheless the Muon Collider environment is peculiar due to BIB presence: detailed simulation considering BIB is mandatory to assess realistic performance in physics measurements
- With $\sqrt{s} = 3$ TeV and L = 1 ab⁻¹ 500k Higgs are expected, enough statistics to aim at precision measurements

Figure 1: Representation of the Muon Collider Detector used in this study, with its main components and the shielding nozzles [2]

Figure 2: Event display showing reconstructed BIB tracks in the detector

Figure 3: Higgs production cross-sections at a lepton collider

Analysis strategy

- Higgs width at a 3 TeV Muon Collider can be measured indirectly using on-shell and off-shell Higgs decaying to ZZ and W⁺W⁻, a technique already used by CMS [3]
 - On-shell → on-shell Higgs decays to ZZ* and WW*
 - Off-shell → VV produced through off-shell Higgs
 - \circ Their ratio is proportional only to Γ_{H}
- Coupling g_{Hxx} can be obtained measuring $\sigma(\mu^+ \mu^- \rightarrow H) \times BR(H \rightarrow xx)$, once Γ_{μ} is known
- This study uses both **ZZ** and **W**⁺**W**⁻ decay channels. BIB events superimposed on physics events before event reconstruction is performed
- Candidate selection:
 - Max P_T muon(s)
- Jets required not to contain selected muon(s)
- In H → W⁺W⁻ analysis missing transverse energy used as neutrino candidate
- Template fits to pseudo-experiments performed to determine uncertainties in event counts
- Finally couplings and Γ_{H} are fitted from event counts and their uncertainties

Figure 4: Sketch showing events topology

Process	Expected events
On-shell $H \to ZZ \to \mu^+\mu^- jj$	38.2
Off-shell $H \to ZZ \to \mu^+\mu^- jj$	56.0
$\nu\bar{\nu}\mu^+\mu^-jj$ background	458.3
On-shell $H \to W^+W^- \to \mu\nu_{\mu}jj$	1803.4
Off-shell $H \to W^+W^- \to \mu\nu_{\mu}jj$	411.4
$\nu \bar{\nu} \mu \nu_{\mu} j j$ background	2520.3

Table 1: Expected event counts for each signal and background sample used

H → ZZ template fit

- 3D template fit to pseudo-experiments on:
 - Reconstructed Higgs mass M_L
- Reconstructed riggs mass m_H
 Sum of muon's transverse momenta P_{T,µ+}+P_{T,µ}

H → WW template fit

- 3D template fit to pseudo-experiments on:
 - Reconstructed Higgs mass M_H
 - Muon transverse momentum P
- Cosine of muon's helicity angle $\cos(\theta^{\text{HEL}})$

Couplings and width fit

- All fitted signal yields, together with results of $H \rightarrow bb^{[4]}$ and H \rightarrow μ^+ $\mu^{-[5]}$ analyzes, are inputs of the final fit
- Results compared with CLIC, a proposed e⁺e⁻ linear collider, which takes advantage of multiple energy stages and larger luminosity
 - o 25 yrs of CLIC operation vs 5 yrs of Muon Collider

$g_{H\mu\mu}$	19.2%	7.8%	
g_{Hbb}	1.7%	0.9%	
g_{HWW}	1.4%	0.9%	
g_{HZZ}	6.1%	0.8%	
Γ_H	5.4%	3.5%	
	$1 \text{ ab}^{-1} @ 3 \text{ TeV}$	0.5 ab ⁻¹ @ 350 GeV + 1.5 ab ⁻¹ @ 1.4 TeV + 2 ab ⁻¹ @ 3 TeV	
	Muon Collider	CLIC	
	Muon Collidor	(1110)	

Table 2: Expected resolutions on Higgs width and its couplings to Z, W, b and µ, compared between Muon Collider and CLIC, a proposed linear e⁺e⁻

References

- [1] Phys. Procedia 37 (2012) 2015
- [2] https://confluence.infn.it/display/muoncollider/Muon+Collider+Detector [5] See A. Montella's poster
- [3] Phys.Rev.D 99 (2019) 11, 112003

- [4] See L. Buonincontri's poster
- [6] Eur. Phys. J. C 77, 475 (2017)